Using Haramein's The Electron and the Holographic Mass Solution:

$$\mu={m_p\over m_e}={2\phi m_{\ell}\over {\phi_em_{\ell}/2\alpha}}=4\alpha{\phi\over\phi_e}=4\alpha{a_0\over r_p}=1836.15267...$$

Compare to:

$$\mu={\alpha^2\over{\pi r_pR_{\infty}}}=1836.15267...$$

$\mu=$ proton to electron mass ratio

$m_p=$ mass of proton

Compare to:

$$\mu={\alpha^2\over{\pi r_pR_{\infty}}}=1836.15267...$$

$\mu=$ proton to electron mass ratio

$m_p=$ mass of proton

$m_e=$ mass of electron

$\phi={\eta\over R}$ Holographic ratio for proton

$\phi={\eta\over R}$ Holographic ratio for proton

$\phi_e={\eta_e\over R_e}$ Holographic ratio for electron

$m_{\ell}=$ Planck mass

$a_0=$ Bohr radius

$r_p=$ proton radius (muonic hydrogen proton radius)

$R_{\infty}=$ Rydberg constant

$m_{\ell}=$ Planck mass

$a_0=$ Bohr radius

$r_p=$ proton radius (muonic hydrogen proton radius)

$R_{\infty}=$ Rydberg constant

Google calculator link and results snapshot:

((4 * fine-structure constant * hbar) / (m_e * c * fine-structure constant)) / (((4 * hbar) / c) / m_p) =

1 836.15267

CODATA value for proton-electron mass ratio:

http://physics.nist.gov/cgi-bin/cuu/Value?mpsme

proton-electron mass ratio | |

Value | 1836.152 673 89 |

Standard uncertainty | 0.000 000 17 |

Relative standard uncertainty | 9.5 x 10^{-11} |

Concise form | 1836.152 673 89(17) |

There remain a few issues to be ironed out as Haramein's paper, The Electron and the Holographic Mass Solution, reports the proton to electron mass ratio as:

$$\mu={m_p\over m_e}={2\phi m_{\ell}\over {\phi_em_{\ell}/2\alpha}}=4\alpha{\phi\over\phi_e}=1836.942579077855...$$

So, the work continues to understand this difference...

This result, the 1836.94259077855... above, is calculated using the CODATA value for $\alpha$, the 2013 muonic hydrogen charge radius in the $phi$ calculation, and $phi_e=6.108458512E-25$ . See Google Drive Excel File for calculations.

More in upcoming post: Another Equation for Proton to Electron Mass Ratio!!! #2

**The Surfer, OM-IV**