$$m_e={2R_{\infty}h\over c\alpha^2}$$

$$m_e{\alpha^2\over R_{\infty}}={2h\over c}$$

$$m_e{\alpha^2\over \pi R_{\infty}}={2h\over \pi c}$$

Let $r_e={\alpha^2\over\pi R_{\infty}}$, then:

$$m_er_e={2h\over\pi c}$$

Now, because for every action there is an equal and opposite reaction, for every force there is an equal and opposite force, for every torque, there is an equal and opposite torque, equate $m_pr_p$ to $m_er_e$ to balance torque/spin between proton and electron:

$$m_er_e={2h\over\pi c}=m_pr_p$$

$$\therefore {m_p\over m_e}={r_e\over r_p}={\alpha^2\over\pi r_pR_{\infty}}=1836.15267$$

Where:

$$m_pr_p={2h\over\pi c}=4\ell m_{\ell}$$

$$r_p=0.841235640294664\;fm$$

Compare to TOP_PCG calculated $r_p$:

$r_p=0.841235640294664\;fm$

$r_p=0.841235640479985\;fm$ <~~ TOP_PCG

Compare to TOP_PCG calculated $r_p$:

$r_p=0.841235640294664\;fm$

$r_p=0.841235640479985\;fm$ <~~ TOP_PCG

$m_p=$ proton mass

$m_e=$ electron mass

$r_p=$ proton radius

$r_e=$ effective torque arm radius for electron

$\alpha=$ fine-structure constant

$h=$ Planck constant

$c=$ speed of light

$R_{\infty}=$ Rydberg constant

$\ell=$ Planck length

$m_{\ell}=$ Planck mass

QED.

https://en.wikipedia.org/wiki/Q.E.D.

ReplyDeleteYears are passing by as the mainstream FLOUNDERS!

ReplyDeleteHa ha

π€‘π€‘π€‘ <--- Rare Triple CLown!!!

NASA's having trouble with the Hubble constant.

ReplyDeleteHa ha

π€‘π€‘π€‘ <--- Rare Triple CLown!!!

(usually comes in pairs)