## QMAP: Qanon Drops & POTUS Tweets

Be a part of the Great Awakening. Get real-time Qanon drops and POTUS tweets. We are the news now!

**The Surfer, OM-IV**

Unified Physics of Consciousness

## QMAP: Qanon Drops & POTUS Tweets

Be a part of the Great Awakening. Get real-time Qanon drops and POTUS tweets. We are the news now!

101 count = 0

105 for i = 0 to 20

106 print

107 next i

110 Dim x2(7),sign(7), dx(7)

120 Rem Init some vars

125 aminerr=1000

130 rem res = 8.5e-17

132 res = 1e-4

200 xpi=3.14159265358979323846

250 rem 8 coefs here

255 Rem elementary charge (e)-0

260 x2(0)=1.60217662e-19

265 Rem Planck's constant (h)-1

300 x2(1)=6.62607004e-34

350 rem eletron mass (Me)-2

400 x2(2)=9.109383560899034e-31

450 Rem Proton radius (Rp)-3

500 x2(3)=8.41235640479985e-16

550 Rem Rydberg Constant (R_H or R_{\infty})-4

600 x2(4)=10973731.5685083

610 Rem Permittivity of free space (e0)-5

620 x2(5)=8.854187817e-12

701 Rem Speed of Light (c)-6

702 x2(6)=299792458.0

703 Rem Proton mass (Mp)-7

704 x2(7)=1.672621898209999e-27

710 For i = 0 to 6

720 sign(i)=0

730 dx(i) = 0.01*res*(x2(i))

740 next i

750 Rem define bit to be twiddled here

755 sign(0)=1

760 sign(1)=1

770 sign(2)=1

780 sign(3)=1

790 sign(4)=1

795 sign(5)=1

797 sign(6)=1

1000 rem starting error

1010 xerr1=x2(2)*x2(0)^4/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))

1015 yerr2=-xpi*x2(3)*x2(6)*x2(2)/(2*x2(1))

1017 err = xerr1 + yerr2 - 1.0

1020 digits=int(-log(abs(yerr+0.00001))/log(10)+0.5)

1030 Print "Starting err is: ";err

1032 Print "Starting xerr1 is: ";xerr1

1034 Print "Starting yerr2 is: ";yerr2

1040 print "Digits resolution ";digits

1050 print "aminerr error is: ";aminerr

1060 for i = 0 to 6

1061 print "i= ";i, x2(i)

1062 next i

1100 print "pi= ";xpi

1111 rem end

2000 Rem Main Loop

2010 For i = 0 to 6

2020 x2(i)=x2(i)+sign(i)*dx(i)

2030 xerr1=x2(2)*x2(0)^4/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))

2032 yerr2=-xpi*x2(3)*x2(6)*x2(2)/(2*x2(1))-1.0

2034 err=abs(xerr1+yerr2)

2035 if err>aminerr then sign(i)=-1*sign(i)

2037 if err<aminerr then aminerr = err

2040 next i

2050 if err < 1.5*res then goto 5000

2055 print "Working ";err

2058 count = count+1

2060 goto 2000

5000 Rem

5001 xresstop=2e-15

5002 if res > xresstop then res = res/10.0

5010 For i = 0 to 6

5030 dx(i) = 0.01*res*(x2(i))

5040 next i

5100 if res > xresstop then goto 2000

5106 Print "Done."

5107 print "Coef "

5109 for i = 0 to 7

5110 print x2(i);" "

5120 next i

6000 rem Final error

6010 xerr1=(x2(2)*x2(0)^4)/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))

6012 yerr2=-xpi*x2(3)*x2(6)*x2(2)/(2*x2(1)) - 1.0

6014 err=abs(xerr1+yerr2)

6020 digits=int(-log(abs(err+1e-16))/log(10)+0.5)

6030 Print "Starting err is: ";err

6040 print "Digits resolution ";digits

6050 print "Final error is: ";aminerr

6060 print "Iterations= ";count

6070 print xpi;" <-ideal"

6080 print xpi+err;" <-calc'd

6085 print "Calc'd proton mass= ";2*x2(1)/(xpi*x2(3)*x2(6))

6087 print "Input proton mass= ";x2(7)

6090 print "Proton/electron mass ratio=";x2(7)/x2(2)

6100 end

105 for i = 0 to 20

106 print

107 next i

110 Dim x2(7),sign(7), dx(7)

120 Rem Init some vars

125 aminerr=1000

130 rem res = 8.5e-17

132 res = 1e-4

200 xpi=3.14159265358979323846

250 rem 8 coefs here

255 Rem elementary charge (e)-0

260 x2(0)=1.60217662e-19

265 Rem Planck's constant (h)-1

300 x2(1)=6.62607004e-34

350 rem eletron mass (Me)-2

400 x2(2)=9.109383560899034e-31

450 Rem Proton radius (Rp)-3

500 x2(3)=8.41235640479985e-16

550 Rem Rydberg Constant (R_H or R_{\infty})-4

600 x2(4)=10973731.5685083

610 Rem Permittivity of free space (e0)-5

620 x2(5)=8.854187817e-12

701 Rem Speed of Light (c)-6

702 x2(6)=299792458.0

703 Rem Proton mass (Mp)-7

704 x2(7)=1.672621898209999e-27

710 For i = 0 to 6

720 sign(i)=0

730 dx(i) = 0.01*res*(x2(i))

740 next i

750 Rem define bit to be twiddled here

755 sign(0)=1

760 sign(1)=1

770 sign(2)=1

780 sign(3)=1

790 sign(4)=1

795 sign(5)=1

797 sign(6)=1

1000 rem starting error

1010 xerr1=x2(2)*x2(0)^4/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))

1015 yerr2=-xpi*x2(3)*x2(6)*x2(2)/(2*x2(1))

1017 err = xerr1 + yerr2 - 1.0

1020 digits=int(-log(abs(yerr+0.00001))/log(10)+0.5)

1030 Print "Starting err is: ";err

1032 Print "Starting xerr1 is: ";xerr1

1034 Print "Starting yerr2 is: ";yerr2

1040 print "Digits resolution ";digits

1050 print "aminerr error is: ";aminerr

1060 for i = 0 to 6

1061 print "i= ";i, x2(i)

1062 next i

1100 print "pi= ";xpi

1111 rem end

2000 Rem Main Loop

2010 For i = 0 to 6

2020 x2(i)=x2(i)+sign(i)*dx(i)

2030 xerr1=x2(2)*x2(0)^4/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))

2032 yerr2=-xpi*x2(3)*x2(6)*x2(2)/(2*x2(1))-1.0

2034 err=abs(xerr1+yerr2)

2035 if err>aminerr then sign(i)=-1*sign(i)

2037 if err<aminerr then aminerr = err

2040 next i

2050 if err < 1.5*res then goto 5000

2055 print "Working ";err

2058 count = count+1

2060 goto 2000

5000 Rem

5001 xresstop=2e-15

5002 if res > xresstop then res = res/10.0

5010 For i = 0 to 6

5030 dx(i) = 0.01*res*(x2(i))

5040 next i

5100 if res > xresstop then goto 2000

5106 Print "Done."

5107 print "Coef "

5109 for i = 0 to 7

5110 print x2(i);" "

5120 next i

6000 rem Final error

6010 xerr1=(x2(2)*x2(0)^4)/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))

6012 yerr2=-xpi*x2(3)*x2(6)*x2(2)/(2*x2(1)) - 1.0

6014 err=abs(xerr1+yerr2)

6020 digits=int(-log(abs(err+1e-16))/log(10)+0.5)

6030 Print "Starting err is: ";err

6040 print "Digits resolution ";digits

6050 print "Final error is: ";aminerr

6060 print "Iterations= ";count

6070 print xpi;" <-ideal"

6080 print xpi+err;" <-calc'd

6085 print "Calc'd proton mass= ";2*x2(1)/(xpi*x2(3)*x2(6))

6087 print "Input proton mass= ";x2(7)

6090 print "Proton/electron mass ratio=";x2(7)/x2(2)

6100 end

If you look at precisely how they solved the second order differential Schrรถdinger equation for the hydrogen atom (the only one with an analytical solution), and see how they derived the equation that precisely links the QUANTUM energy steps to frequency/energy (the photon frequency/energy for when the electron jumps shells; Rydberg equation - THE FULL ONE), AND solve it precisely without making their reduced mass approximation, you get the solution to the proton radius puzzle and much more. Requires iteration on a computer to solve AND it is precise.

## [1809.09635] The Proton Radius Puzzle- Why We All Should Care

Abstract: The status of the proton radius puzzle (as of the date of the Confer- ence) is reviewed. The most likely potential theoretical and experimental explanations are discussed. Either the electronic hydrogen experiments were not sufficiently accurate to measure the proton radius, the two- photon exchange effect was not properly accounted for, or there is some kind of new physics.

## [1809.06373] Proton charge radius extraction from electron scattering data using dispersively improved chiral effective field theory

Abstract: We extract the proton charge radius from the elastic form factor data using a theoretical framework combining chiral effective field theory and dispersion analysis. Complex analyticity in the momentum transfer correlates the behavior of the spacelike form factor in different $Q^2$ regions and permits the use of data up to $Q^2 \sim$ 0.5 GeV$^2$ in constraining the radius.

The work done by the 4th Order Polynomial paper solves all of this and it is a refinement of Haramein’s work:

https://www.academia.edu/36762363/Full_Wave_Equation_for_a_Single_Hydrogen_Atom_and_Solution_to_Masses_and_Constants

Full_Wave_Equation_for_a_Single_Hydrogen_Atom_and_Solution_to_Masses_and_Constants

a-4-th-order-7-dimensional-polynomial-wh-DRAFT-FractalU-3-11

other links can be found in previous blog posts...

## The wrap-up smear?

Is she talking about what the Democrats are doing to Trump concerning Russia?

The

## Pythia - Wikipedia

The Pythia was established at the latest in the 8th century BC, and was widely credited for her prophecies inspired by being filled by the spirit of the god (or enthusiasmos), in this case Apollo. The Pythian priestess emerged pre-eminent by the end of 7th century BC and would continue to be consulted until the 4th century AD.

## [1801.08816] New measurement of the $1S-3S$ transition frequency of hydrogen: contribution to the proton charge radius puzzle

Abstract: We present a new measurement of the $1S-3S$ two-photon transition frequency of hydrogen, realized with a continuous-wave excitation laser at 205 nm on a room-temperature atomic beam, with a relative uncertainty of $9\times10^{-13}$. The proton charge radius deduced from this measurement, $r_\text{p}=0.877(13)$ fm, is in very good agreement with the current CODATA-recommended value.

Subscribe to:
Posts (Atom)