Processing math: 100%

Wednesday, January 17, 2018

Derivation of The 7D Polynomial from the Rydberg Equation

R_H\equiv{m_ee^4\over8\epsilon_0^2h^3c}
1\equiv{m_ee^4\over8\epsilon_0^2h^3cR_H}
m_r={m_1m_2\over m_1+m_2}
m_1=m_p
m_2=m_e
m_r\approx m_e
1\equiv m_r{e^4\over8\epsilon_0^2h^3cR_H}
1\equiv{m_pm_e\over\left(m_p+m_e\right)}{e^4\over{8\epsilon_0^2h^3cR_H}}
1+{m_e\over m_p}\equiv{m_ee^4\over{8\epsilon_0^2h^3cR_H}}
{\mu=\beta={m_p\over m_e}}={\alpha^2\over\pi r_pR_H}
{1\over m_p}={\pi r_pc\over2h}
1\equiv{m_ee^4\over{8\epsilon_0^2h^3cR_H}}-{\pi r_pcm_e\over2h}

No comments:

Post a Comment

Watch the water = Lake 👩 🌊🦆