Quantized Superfluid Equation:
$$\oint v\cdot d\ell={nh\over m}$$
For proton modeled as a quantized superfluid, $v=c$ and m=m_p:
$$2\pi c\ell={nh\over m_p}$$
$$\ell={nh\over 2\pi c m_p}$$
$$m_p={nh\over 2\pi c\ell}$$
\ell={nh\over 2\pi c m_p}
m_p={nh\over 2\pi c\ell}
__n_ | ββ (fm) | mβ (MeV/c²) | __Eβ (MeV) | Possible Transitions (ΞE, MeV) | Corresponding Particle/Resonance |
---|---|---|---|---|---|
4 | 0.841 | 938.272 | 938.272 | - | Proton |
5 | - | 1172.840 | 1172.840 | 5→4 (234.57) | ≈ Ξ(1232) |
6 | - | 1407.408 | 1407.408 | 6→5 (234.57) | ≈ N(1440) |
7 | - | 1642.976 | 1642.976 | 7→6 (234.57) | ≈ Ξ(1600) |
... | ... | ... | ... | ... | ... |
533 | - | ≈125000 | ≈125000 | 533→532 (234.57) | Higgs Boson |
Quantum Vortex Equations Interactive
Blasting through the matches like Naoya Inoue!!!
Raw Grok here for reference: https://x.com/i/grok?conversation=1941367386965438661
ReplyDelete"Hammer Don't Hurt 'em" comes to mind.... Inoue
ReplyDeleteQCD uses fudge factor, my equations predict the ∆ and N-Roper resonances more accurately than QCD.
ReplyDelete