Sunday, June 29, 2025

Grok Generated LaTex for Fine-structure Constant Equations




### Given Equations
We start with the following system of equations:

1. **\(\alpha^2 = \pi \cdot r_p \cdot R_\infty \cdot \frac{R_H}{R_\infty - R_H}\)**  
   - This equation relates \(\alpha^2\) to the variables \(r_p\), \(R_\infty\), and \(R_H\).

2. **\(r_p = \frac{2}{\pi R_H} \cdot \left( \frac{v_u}{c} \right)^2\)**  
   - This equation expresses \(r_p\) in terms of \(R_H\), \(v_u\), and \(c\).

The goal is to solve for \(\alpha\) in terms of \(R_\infty\), \(R_H\), \(v_u\), and \(c\) by eliminating \(r_p\).

---

### Solution Process
To find \(\alpha\), we substitute the expression for \(r_p\) from the second equation into the first equation and simplify step-by-step.

#### Step 1: Substitution
- Substitute \(r_p = \frac{2}{\pi R_H} \cdot \left( \frac{v_u}{c} \right)^2\) into the first equation:  
  \(\alpha^2 = \pi \cdot \left( \frac{2}{\pi R_H} \cdot \left( \frac{v_u}{c} \right)^2 \right) \cdot R_\infty \cdot \frac{R_H}{R_\infty - R_H}\)

#### Step 2: Simplification
- **Cancel the \(\pi\) terms:**  
  The \(\pi\) in the numerator and denominator cancels out:  
  \(\alpha^2 = \frac{2}{R_H} \cdot \left( \frac{v_u}{c} \right)^2 \cdot R_\infty \cdot \frac{R_H}{R_\infty - R_H}\)

- **Simplify the \(R_H\) terms:**  
  The \(R_H\) in the numerator and denominator simplifies:  
  \(\frac{2}{R_H} \cdot \frac{R_H}{R_\infty - R_H} = \frac{2}{R_\infty - R_H}\)  
  Thus:  
  \(\alpha^2 = \frac{2}{R_\infty - R_H} \cdot \left( \frac{v_u}{c} \right)^2 \cdot R_\infty\)

- **Rearrange:**  
  Rewrite the expression for clarity:  
  \(\alpha^2 = \frac{2 R_\infty}{R_\infty - R_H} \cdot \left( \frac{v_u}{c} \right)^2\)

#### Step 3: Solve for \(\alpha\)
- Take the square root of both sides:  
  \(\alpha = \sqrt{ \frac{2 R_\infty}{R_\infty - R_H} \cdot \left( \frac{v_u}{c} \right)^2 }\)

- **Apply the square root property:**  
  Since \(\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\) (for positive \(a\) and \(b\)):  
  \(\alpha = \sqrt{ \frac{2 R_\infty}{R_\infty - R_H} } \cdot \sqrt{ \left( \frac{v_u}{c} \right)^2 }\)

- **Simplify:**  
  The square root of the squared term simplifies:  
  \(\alpha = \sqrt{ \frac{2 R_\infty}{R_\infty - R_H} } \cdot \frac{v_u}{c}\)

- **Alternative form:**  
  Rearrange for conciseness:  
  \(\alpha = \frac{v_u}{c} \cdot \sqrt{ \frac{2 R_\infty}{R_\infty - R_H} }\)

This form is clear and expresses \(\alpha\) in terms of the required variables.

---

### Final Answer
The solution for \(\alpha\) is:  
\(\alpha = \frac{v_u}{c} \sqrt{\frac{2 R_\infty}{R_\infty - R_H}}\)

---

### Notes
- The expression assumes \(R_\infty - R_H > 0\) to ensure the denominator is positive and the square root is defined.  
- All variables (\(R_\infty\), \(R_H\), \(v_u\), \(c\)) are treated as positive quantities for simplicity, consistent with typical mathematical or physical contexts.

---

This response provides the complete mathematical content with all dollar sign pre and postfixes removed, as requested, while maintaining readability through markdown formatting.

No comments:

Post a Comment

Watch the water = Lake πŸ‘© πŸŒŠπŸ¦†