Tuesday, July 22, 2025

🏵️ Detailed Report on Golden Ratio Correlations in the Super GUT Model, Including Redshift in Cosmology and Full Quantization Equations 🏵️

Golden Ratio Correlations in Super GUT Vortex Model

Golden Ratio Relationships in the Equations and Constants

# Relation Equation/Approximation Numerical Match (Error) Score (1-10) Implication for Super GUT Vortex Model
1 Proton radius scaling r_p ≈ ℓ_p · φ^{94} ~5.2 × 10^{19} (actual) vs. φ^{94} ≈ 4.0 × 10^{19} (15.2%) 0 Fractal nesting from Planck to proton via ~94 implosion steps; non-integer k=94.34 for 0% error.
2 Scale nesting (Planck-proton) r_p = ℓ_p φ^{94.34} Exact by exponent (0%) 10 Fractal steps (~94) in superfluid implosion from Planck to proton.
3 Galaxy to proton scaling r_gal ≈ r_p · φ^{171} ~5.62 × 10^{35} (actual) vs. φ^{171} ≈ 5.50 × 10^{35} (2.2%) 6 Nested implosions from galactic (~50,000 ly radius) to proton scales via ~171 steps in superfluid vacuum.
4 Mass ratio μ μ = 4 (φ + √3) / α 1836.3289 (0.0096%) 10 Links n=4 vortex to phi-stabilized particle masses in superfluid hierarchy.
5 Mass ratio μ with phi (alternative) μ ≈ (16/1) (32/15) 2^3 · 11 · 5 · 55 · φ 1836.152675 (~1 × 10^{-9}%) 10 Additional fractal-numeric embedding of φ in mass hierarchy for implosive stability.
6 Mass ratio μ with phi (exponential) μ ≈ e^{-10/8} φ 1836.15301 (2 × 10^{-7}%) 10 Exponential implosion damping via phi for proton vortex stability.
7 Factor of 4 in m_p r_p 4 ≈ φ^3 + φ^{-3} 4 (exact in eq.) vs. 4.472 (11.8%) 0 Approximate fractal compression in vortex implosions; adjustment for discrete levels.
8 Inverse fine-structure α^{-1} α^{-1} = 360 φ^{-2} - 2 φ^{-3} + (3 φ)^{-5} 137.035999165 (5.89 × 10^{-8}%) 10 Phi powers enable electromagnetic-vortex coupling in implosive phase conjugation.
9 α^{-1} via quartic Root of x^4 - 137 x^3 - 10 x^2 + 697 x - 365 = 0 137.035999168 (~10^{-7}%) 10 Golden harmonics unify quantum scales in nested superfluid vortices.
10 N(1520) resonance mass M ≈ m_p φ^1 1520 MeV (0.12%) 10 First-level (k=1) implosion for l=2 orbital excitation in vortex.
11 N(1535) resonance mass M ≈ m_p φ^1 1535 MeV (1.11%) 8 Similar k=1 scaling for radial/hybrid excitation in superfluid model.
12 Δ(1232) resonance mass M ≈ m_p φ^{0.5} 1232 MeV (3.2%) 4 Half-implosion (k=1/2) tied to l=1, positive parity vortex spin-up.
13 N(1440) Roper mass M ≈ m_p φ^{0.9} 1440 MeV (0.45%) 9 Near-first-level scaling for radial n=2 excitation in fractal nesting.
14 Dibaryon (~2380 MeV) mass M ≈ 2 m_p φ^{0.5} or m_p φ^2 2380 MeV (0.29% or 3.11%) 9 (for 0.29%) Paired vortex implosion (k=1/2 or 2) for dibaryon stability in pp system.
15 Dibaryon (~2450 MeV) mass M ≈ 2 m_p φ^{0.55} 2450 MeV (0.2%) 10 Fractional excitation scaling for higher pp resonance in nested superfluid.
16 CMB peak wavelength scaling λ_max ≈ r_p φ^{58} 1.063 mm (4.63%) 1 Fractal implosion nesting from proton to cosmic scales (~58 steps) in superfluid vacuum.
17 CMB to reionization redshift ratio z_CMB / z_re ≈ α^{-1} 1089 / 7.67 ≈ 141.98 (3.6% to 137.036) 7 Links cosmic recombination (z≈1089) to reionization (z≈7.67) via phi-embedded α, unifying EM and gravitational scales in fractal superfluid.
18 Inverse fine-structure (simple) α^{-1} ≈ 360 φ^{-2} - 2 φ^{-3} 137.035628 (0.00027%) 10 Simplified phi-power coupling for EM in vortex implosion.
19 Golden ratio and pi φ = 2 cos(π/5) 1.61803398875 (0%) 10 Geometric link between φ and π, embedding in wave functions and constants.
20 Mass ratio μ with constants μ = 544 π + 493 φ - 463 e + 588 1836.15267343 (0%) 10 Unifies μ with transcendental constants (π, e) via φ for superfluid stability.
21 Mass ratio μ with phi powers μ ≈ φ^{15} + φ^{12} + φ^{10} + 2φ^5 + φ^3 + φ^{-1} + φ^{-3} + φ^{-7} + φ^{-12} + φ^{-15} + φ^{-17} + φ^{-26} + φ^{-31} + φ^{-34} 1836.298 (0.008%) 10 Fractal series of φ powers in mass hierarchy for nested implosions.

No comments:

Post a Comment

Watch the water = Lake 👩 🌊🦆