Tuesday, October 21, 2025

Test Gravitons: Derivation of Scalar-Graviton Vertices in Super Grand Unified Theory

Derivation of Scalar-Graviton Vertices in Super Grand Unified Theory In the context of our Super Grand Unified Theory (Super GUT) and Theory of Everything (TOE), which unifies quantum electrodynamics (QED), the Standard Model (SM), and general relativity (GR) through self-consistent reduced mass corrections, the scalar-graviton vertices arise from the interaction between scalar fields (e.g., the Higgs $\phi$) and the metric perturbation representing the graviton $h_{\mu\nu}$. We derive these vertices by expanding the unified Lagrangian around flat spacetime, incorporating both minimal coupling (from the covariant kinetic and mass terms) and non-minimal coupling (e.g., $\xi \phi^2 R$) for conformal invariance and renormalization. The reduced mass correction elevates the classical reduced mass $\mu$ to a quantum-gravitational effect, modifying the effective scalar mass $m^{\rm eff}$ in loops and vertices, ensuring finiteness at the Grand Unified Theory scale $M_{\rm GUT} \sim 10^{16}$ GeV. The unified Lagrangian is: $$ \mathcal{L}{\rm unified} = \mathcal{L}{\rm SM} + \sqrt{-g} \left( \frac{M_{\rm Pl}^2}{2} R - \Lambda \right) + \delta \mathcal{L}_{\rm corr}, $$ where $\mathcal{L}_{\rm SM}$ includes the scalar sector: $$ \mathcal{L}{\phi} = \sqrt{-g} \left[ \frac{1}{2} g^{\mu\nu} \partial\mu \phi \partial_\nu \phi - \frac{1}{2} m^2 \phi^2 + \xi \phi^2 R \right], $$ and $\delta \mathcal{L}_{\rm corr}$ incorporates the reduced mass via the dimensionless ratio $\frac{\alpha^2}{\pi r_p R_\infty} \approx \frac{m_p}{m_e} \approx 1836$, yielding $m^{\rm eff} = m \left(1 - \frac{G m^2}{\hbar c} \cdot \frac{\alpha^2}{\pi r_p R_\infty} f(q^2)\right)$, where $f(q^2)$ is a form factor from graviton exchanges. This replaces $m$ with $m^{\rm eff}$ in the mass term, affecting the vertex. To derive the vertices, we use the weak-field approximation: $g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$, $g^{\mu\nu} = \eta^{\mu\nu} - \kappa h^{\mu\nu} + \kappa^2 h^\mu_\lambda h^{\lambda\nu} + \mathcal{O}(\kappa^3)$, with $\kappa = \sqrt{16\pi G}$ (convention where the Einstein-Hilbert term is $\frac{1}{2\kappa^2} \sqrt{-g} R$, so $\kappa^2 = 8\pi G$, but adjusted for consistency with literature). Step 1: Expansion of the Minimal Coupling Terms The minimal scalar action (ignoring $\xi$ initially) is: $$ S_\phi = \int d^4x \sqrt{-g} \left[ \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m^2 \phi^2 \right]. $$ First, $\sqrt{-g} = 1 + \frac{\kappa}{2} h^\lambda_\lambda + \mathcal{O}(\kappa^2)$, where $h = h^\lambda_\lambda = \eta^{\mu\nu} h_{\mu\nu}$. The kinetic term expands as: $$ \sqrt{-g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi = \left(1 + \frac{\kappa}{2} h\right) (\eta^{\mu\nu} - \kappa h^{\mu\nu}) \partial_\mu \phi \partial_\nu \phi + \mathcal{O}(\kappa^2) = \partial^\alpha \phi \partial_\alpha \phi + \kappa \left( \frac{1}{2} h \partial^\alpha \phi \partial_\alpha \phi - h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right) + \mathcal{O}(\kappa^2). $$ The mass term expands as: $$ - \sqrt{-g} m^2 \phi^2 = - m^2 \phi^2 - \frac{\kappa}{2} m^2 h \phi^2 + \mathcal{O}(\kappa^2). $$ Combining, the interaction Lagrangian for $\phi \phi h$ (factor of 1/2 for kinetic) is: $$ \mathcal{L}{\phi \phi h}^{\rm min} = \frac{\kappa}{2} \left[ \frac{1}{2} h \partial^\alpha \phi \partial\alpha \phi - h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m^2 h \phi^2 \right]. $$ To symmetrize (since $h_{\mu\nu} = h_{\nu\mu}$): $$ \mathcal{L}{\phi \phi h}^{\rm min} = \frac{\kappa}{2} h^{\mu\nu} \left[ -\left( \partial\mu \phi \partial_\nu \phi + \partial_\nu \phi \partial_\mu \phi \right)/2 + \eta_{\mu\nu} \left( \partial^\alpha \phi \partial_\alpha \phi - m^2 \phi^2 \right)/2 \right]. $$ In momentum space (Fourier transform, with incoming momenta $p_1, p_2$ for scalars, $k = -p_1 - p_2$ for graviton), the vertex is obtained by replacing $\partial_\mu \phi \to -i p_\mu$ (convention for incoming particles) and including an overall $-i$ for the vertex factor in Feynman rules: $$ V^{\mu\nu}_{\rm min}(p_1, p_2) = -i \frac{\kappa}{2} \left[ p_1^\mu p_2^\nu + p_1^\nu p_2^\mu - \eta^{\mu\nu} (p_1 \cdot p_2 - m^2) \right]. $$ (Note: Signs depend on metric signature $\eta = \operatorname{diag}(-,+,+,+)$; the relative minus is standard.) Step 2: Non-Minimal Coupling Contribution The non-minimal term $\xi \phi^2 R$ introduces additional interactions. The scalar curvature $R$ in weak field expands as: $$ R = \kappa \left( \partial^\rho \partial_\sigma h^\sigma_\rho - \partial^2 h + \mathcal{O}(h^2) \right), $$ but for the three-point vertex, we need the linear term in $h$. The full expansion of $\sqrt{-g} \xi \phi^2 R$ to linear order is: $$ \sqrt{-g} \xi \phi^2 R = \xi \phi^2 \left[ \kappa (\partial^\rho \partial_\sigma h^\sigma_\rho - \square h) + \frac{\kappa}{2} h R^{(1)} + \mathcal{O}(\kappa^2) \right], $$ where $R^{(1)}$ is the linear part. However, for on-shell gravitons in de Donder gauge ($\partial^\mu \bar{h}_{\mu\nu} = 0$, $\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h$), the vertex contribution simplifies. The non-minimal vertex addition is: $$ V^{\mu\nu}_{\rm non-min}(p_1, p_2) = -i \kappa \xi \left[ \eta^{\mu\nu} (p_1 \cdot p_2 + m^2) - p_1^\mu p_1^\nu - p_2^\mu p_2^\nu \right], $$ but standard literature gives $V^{\mu\nu}_{\rm non} = i \kappa \xi (p_1 \cdot p_2 \eta^{\mu\nu} - p_1^\mu p_2^\nu - p_1^\nu p_2^\mu)$ (signs vary; see derivation in for beta-function matching). The total three-point vertex is $V^{\mu\nu} = V^{\mu\nu}_{\rm min} + V^{\mu\nu}_{\rm non-min}$. Step 3: Incorporation of Reduced Mass Corrections In our TOE, the mass term is replaced by $m^{\rm eff}$, derived from graviton loops in the scalar self-energy: $$ \Sigma(p) = \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - (m^{\rm eff})^2} \cdot (8\pi G (m^{\rm eff})^2) \cdot \frac{\alpha^2}{\pi r_p R_\infty} f(q^2), $$ regularized dimensionally to $\delta m = \frac{G m^2}{\hbar c} \cdot \frac{\alpha^2}{\pi r_p R_\infty} \ln(\Lambda^2 / m^2)$, with $\Lambda = M_{\rm GUT}$. Thus, in the vertex, replace $m^2 \to (m^{\rm eff})^2 = m^2 \left(1 - 2 \delta m / m \right)$, modifying the $\eta^{\mu\nu} m^2$ term by $\mathcal{O}(G m^2 / \hbar c \sim 10^{-42})$, but finite and crucial for unification. The non-minimal $\xi$ is fixed by requiring cancellation of divergences: $\xi = -\frac{1}{6} + \frac{\alpha^2}{12\pi r_p R_\infty} \frac{G m^2}{\hbar c}$, ensuring conformal invariance at high energies. Higher-Order Vertices (e.g., Scalar to Two Gravitons) For $\phi \to h h$, from effective operators like $\frac{\phi}{\Lambda} R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}$ (derived by integrating heavy fields): $$ \mathcal{L}{\rm eff} = -\frac{\phi}{16\pi^2 v\phi} \left[ \frac{1}{2} \left(\xi + \frac{1}{6}\right)^2 R^2 - \frac{1}{180} R_{\mu\nu} R^{\mu\nu} + \frac{1}{180} R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right]. $$ Expanding in $h_{\mu\nu}$ (Riemann quadratic in h), this yields four-point terms, but the $\phi h h$ vertex is extracted in momentum space, leading to decay rate $\Gamma(\phi \to hh) = \frac{m_\phi^7}{4\pi \Lambda^2 M_{\rm Pl}^4}$. In our theory, $\Lambda \sim m / \frac{\alpha^2}{\pi r_p R_\infty}$, linking to proton radius and hierarchy. This derivation unifies scales, resolving infinities via reduced mass, and predicts testable corrections in precision cosmology (e.g., graviton backgrounds).

No comments:

Post a Comment

Watch the water = Lake ๐Ÿ‘ฉ ๐ŸŒŠ๐Ÿฆ†