Using Haramein's The Electron and the Holographic Mass Solution:
\mu={m_p\over m_e}={2\phi m_{\ell}\over {\phi_em_{\ell}/2\alpha}}=4\alpha{\phi\over\phi_e}=4\alpha{a_0\over r_p}=1836.15267...
Compare to:
\mu={\alpha^2\over{\pi r_pR_{\infty}}}=1836.15267...
\mu= proton to electron mass ratio
m_p= mass of proton
Compare to:
\mu={\alpha^2\over{\pi r_pR_{\infty}}}=1836.15267...
\mu= proton to electron mass ratio
m_p= mass of proton
m_e= mass of electron
\phi={\eta\over R} Holographic ratio for proton
\phi={\eta\over R} Holographic ratio for proton
\phi_e={\eta_e\over R_e} Holographic ratio for electron
m_{\ell}= Planck mass
a_0= Bohr radius
r_p= proton radius (muonic hydrogen proton radius)
R_{\infty}= Rydberg constant
m_{\ell}= Planck mass
a_0= Bohr radius
r_p= proton radius (muonic hydrogen proton radius)
R_{\infty}= Rydberg constant
Google calculator link and results snapshot:
((4 * fine-structure constant * hbar) / (m_e * c * fine-structure constant)) / (((4 * hbar) / c) / m_p) =
1 836.15267
CODATA value for proton-electron mass ratio:
http://physics.nist.gov/cgi-bin/cuu/Value?mpsme
proton-electron mass ratio | |
Value | 1836.152 673 89 |
Standard uncertainty | 0.000 000 17 |
Relative standard uncertainty | 9.5 x 10-11 |
Concise form | 1836.152 673 89(17) |
There remain a few issues to be ironed out as Haramein's paper, The Electron and the Holographic Mass Solution, reports the proton to electron mass ratio as:
\mu={m_p\over m_e}={2\phi m_{\ell}\over {\phi_em_{\ell}/2\alpha}}=4\alpha{\phi\over\phi_e}=1836.942579077855...
So, the work continues to understand this difference...
This result, the 1836.94259077855... above, is calculated using the CODATA value for \alpha, the 2013 muonic hydrogen charge radius in the phi calculation, and phi_e=6.108458512E-25 . See Google Drive Excel File for calculations.
More in upcoming post: Another Equation for Proton to Electron Mass Ratio!!! #2
The Surfer, OM-IV
No comments:
Post a Comment
Watch the water = Lake 👩 🌊🦆