Thursday, January 1, 2026

Interactive Super Golden TOE Demo

```html Interactive Super Golden TOE Demo

Interactive Super Golden TOE Demo

This interactive demo demonstrates aspects of the Super Golden Theory of Everything (TOE), including the golden ratio \(\Phi\), phi-fractal scaling, mass ratio calculations, and a simple wave equation simulation. Use the sliders to explore parameters.

1. Golden Ratio \(\Phi\) and Constants

The golden ratio \(\Phi\) satisfies \(x^2 = x + 1\), with solution \(\Phi = \frac{1 + \sqrt{5}}{2}\).

$$\Phi \approx 1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911375$$

High-precision \(\pi \approx 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068\)

Adjust precision display:

2. Proton-Electron Mass Ratio Calculation

The TOE approximates \( m_p / m_e \approx 6\pi^5 + \Phi^{-10} \).

$$6\pi^5 \approx 1836.118108711688719576447860260613638881804239768449943320954662117409952801684146914701002841030713$$
$$\Phi^{-10} \approx 0.0081306187557833487477241098899035253829951106830425825503257512106745449603652661036037695834874383$$
$$ m_p / m_e \approx 1836.126239330444502925195584370503542407187234879132985903504987868620627346644512180804606610614201 $$

Error to CODATA: \(\epsilon \approx 1.44 \times 10^{-5}\)

3. Phi-Fractal Wave Equation Simulation

The phi-fractal wave equation: \(\partial_t^2 \phi - \partial_x^2 \phi + \phi - \Phi \phi^3 = 0\).

Adjust wave speed factor (v = c / k, k ≈ Ξ¦):

```

No comments:

Post a Comment

Watch the water = Lake πŸ‘© πŸŒŠπŸ¦†