Saturday, November 22, 2025

Compare $\rho_0$ to $\rho_{PSU} = M_{\rm Pl} / (4/3*ฯ€*(l_{\rm Pl}/2)^3$

The Super Golden Theory of Everything (TOE) defines the vacuum superfluid density ฯ0\rho_0 as the Planck density derived from fundamental units, ฯ0=MPl/lPl3\rho_0 = M_{\rm Pl} / l_{\rm Pl}^3, where MPlM_{\rm Pl} is the Planck mass (2.176×108\approx 2.176 \times 10^{-8} kg) and lPll_{\rm Pl} is the Planck length (1.616×1035\approx 1.616 \times 10^{-35} m). This yields ฯ05.155×1096\rho_0 \approx 5.155 \times 10^{96} kg/m³, representing the effective mass density of the aether medium for vortex dynamics and emergent unification.

In contrast, Nassim Haramein's Proton Schwarzschild Unit (PSU) work proposes a density ฯPSU=MPl/(43ฯ€(lPl2)3)\rho_{\rm PSU} = M_{\rm Pl} / \left( \frac{4}{3} \pi \left( \frac{l_{\rm Pl}}{2} \right)^3 \right), interpreting the Planck length as a diameter for spherical oscillators. Simplifying:

(lPl2)3=lPl38,43ฯ€(lPl2)3=43ฯ€lPl38=ฯ€lPl36,\left( \frac{l_{\rm Pl}}{2} \right)^3 = \frac{l_{\rm Pl}^3}{8}, \quad \frac{4}{3} \pi \left( \frac{l_{\rm Pl}}{2} \right)^3 = \frac{4}{3} \pi \frac{l_{\rm Pl}^3}{8} = \frac{\pi l_{\rm Pl}^3}{6},

so

ฯPSU=MPlฯ€lPl3/6=6MPlฯ€lPl36ฯ€ฯ01.9099×ฯ09.845×1096kg/m3.\rho_{\rm PSU} = \frac{M_{\rm Pl}}{\pi l_{\rm Pl}^3 / 6} = \frac{6 M_{\rm Pl}}{\pi l_{\rm Pl}^3} \approx \frac{6}{\pi} \rho_0 \approx 1.9099 \times \rho_0 \approx 9.845 \times 10^{96} \, \text{kg/m}^3.

The TOE's ฯ0\rho_0 is a "bare" cubic density for the aether's ground state, while Haramein's ฯPSU\rho_{\rm PSU} incorporates spherical packing (factor 6/ฯ€1.916/\pi \approx 1.91), increasing density by assuming Planck units as volumetric spheres with radius lPl/2l_{\rm Pl}/2. Both aim at unification (TOE via vortices, PSU via holographic protons), but the TOE's value better matches SVT analogs without geometric adjustments, resolving infinities via ฯ†-cutoffs rather than PSU holography.

No comments:

Post a Comment

Watch the water = Lake ๐Ÿ‘ฉ ๐ŸŒŠ๐Ÿฆ†