Top Quark Decay in Quantized Superfluid Model
Top Quark Decay in Quantized Superfluid Model
Model Definition
Energy: $( E(n) = 234.5 \times n )$ MeV
Top Quark: $( n = 736 ), ( E = 172,512 , \text{MeV} \approx 172.5 , \text{GeV} ) $
W Boson: $( n = 342 ), ( E = 80,179 , \text{MeV} \approx 80.2 , \text{GeV} )$
Proton: $( n = 4 ), ( E = 938 , \text{MeV} )$
Decay rule: $( n_{\text{initial}} = n_1 + n_2 + \cdots + n_k )$
Primary Decay
$[ t (n = 736) \rightarrow W^+ (n = 342) + b (n = 394) ]$
$( n_b = 736 - 342 = 394 )$
$( E(394) = 92,393 , \text{MeV} \approx 92.4 , \text{GeV} ) (vs. ( b ) mass ~4.2 GeV, possible composite state)$
W Boson Decay
$[ W^+ (n = 342) \rightarrow \text{jets/leptons} ]$
Hadronic: ( n = 342 ) splits into quarks, hadronizing to protons (( n = 4 )) + others.
Example: Not directly divisible by 4, but jets produce multiple ( n = 4 ) states.
Bottom Quark/State Decay
$[ n = 394 \rightarrow \text{jet} ]$
Possible: $( 394 \approx 98 \times 4 + 2 ) (98 protons + remainder)$.
Collision Context
Proton 1$ (( n = 4 ))$ → Top Quark $(( n = 736 ))$ via collision energy.
Proton 2$ (( m = 4 ))$ → additional protons or spectators.
Full Decay to ( n = 4 )
Total $( n = 736 )$ can be 184 protons $(( 184 \times 4 = 736 ))$.
Realistic chain: $( 736 \rightarrow 342 + 394 )$, then jets yield protons $(( n = 4 ))$ summing to 736 with other particles.
Muh supercomputer is on fiyah!
ReplyDeleteThis is extremely hypothetical, however, could be improved! I was just hacking through...the Jets though comes RIGHT OUT!
ReplyDelete