Sunday, May 21, 2023

Proton Mass Prediction - Proton should be Slightly Lighter - The Surfer was correct!

An earlier post I did on the trends of which way the constants should be varying over the years as they get more and more precise, and my proton prediction did not agree with the trend of the data 2010-2018.  However, there is a 2020 paper that in the most precise measurement of the proton to electron mass ratio and it indicates/hints at the proton should be slightly lighter (which agrees with my prediction):
*https://physicsworld.com/a/protons-could-be-lighter-than-we-thought/
“Intriguingly, the proton-electron mass ratio we have measured is in fact compatible with the recent measurements of the proton mass, which were unexpectedly smaller than previous reference values,” adds Koelemeij. “This means that the proton indeed seems to be lighter than we thought.”*
Here is a link to the post were the trend predictions based upon the polynomial (full Rydberg equation) were made:

The Surfer, OM-IV (Ξ©4)

Speed of Light Calculation and Error Comparison -- 1e-10 Accuracy (~10 digits), cont'd

Note: this is a work in progress to determine if the Full Rydberg equation has roots by numerical methods - the roots being the fundamental physics constants.



And the final constant the error can be minimized by iteration:
(6) Speed of Light, c
error, dx, c
-0.0005446185946568205, 10000000, 299792458
-0.0005446185946568205, 1000000, 299792458
-0.0005446185946568205, 100000, 299792458
-0.00021094319785108784, 100000, 299692458
0.00012295495182268468, 100000, 299592458
0.00012295495182268468, 10000, 299592458
0.0000895551066193434, 10000, 299602458
0.00005615749095255751, 10000, 299612458
0.000022762104598728072, 10000, 299622458
-0.000010631052664744622, 10000, 299632458
-0.000010631052664744622, 1000, 299632458
-0.000007291837241241161, 1000, 299631458
-0.000003952599528678213, 1000, 299630458
-6.133395268337338e-7, 1000, 299629458
-6.133395268337338e-7, 100, 299629458
-2.794123009630667e-7, 100, 299629358
5.451514817345071e-8, 100, 299629258
5.451514817345071e-8, 10, 299629258
2.1122393389916283e-8, 10, 299629268
-1.2270359506239004e-8, 10, 299629278
-1.2270359506239004e-8, 1, 299629278
-8.931084205521245e-9, 1, 299629277
-5.591809126848091e-9, 1, 299629276
-2.252533826130332e-9, 1, 299629275
1.0867413635651246e-9, 1, 299629274
1.0867413635651246e-9, 0.1, 299629274
7.528138112888882e-10, 0.1, 299629274.1
4.1888625901265186e-10, 0.1, 299629274.20000005
8.495870673641548e-11, 0.1, 299629274.3000001

Saturday, May 20, 2023

Electron Mass - New Algorithm Discussion, continued

https://energywavetheory.com/subatomic-particles/electron/

(2) The electron mass:
error, dx, $e_m$
-0.0005446185946568205, 1e-34, 9.109383560899034e-31
-0.0004348416825593615, 1e-34, 9.110383560899034e-31
-0.0003250647704619025, 1e-34, 9.111383560899033e-31
-0.00021528785836444353, 1e-34, 9.112383560899032e-31
-0.0001055109462667625, 1e-34, 9.113383560899032e-31
0.0000042659658308075166, 1e-34, 9.114383560899031e-31
0.0000042659658308075166, 9.999999999999999e-36, 9.114383560899031e-31
0.0000042659658308075166, 1e-36, 9.114383560899031e-31
0.000003168196709646409, 1e-36, 9.11437356089903e-31
0.0000020704275887073464, 1e-36, 9.11436356089903e-31
9.726584677682837e-7, 1e-36, 9.11435356089903e-31
-1.2511065350384598e-7, 1e-36, 9.11434356089903e-31
-1.2511065350384598e-7, 9.999999999999999e-38, 9.11434356089903e-31
-1.5333741276712942e-8, 9.999999999999999e-38, 9.11434456089903e-31
-1.5333741276712942e-8, 9.999999999999998e-39, 9.11434456089903e-31
-4.356050076204099e-9, 9.999999999999998e-39, 9.11434466089903e-31
-4.356050076204099e-9, 9.999999999999998e-40, 9.11434466089903e-31
-3.2582810893799774e-9, 9.999999999999998e-40, 9.11434467089903e-31
-2.160511880511251e-9, 9.999999999999998e-40, 9.114344680899031e-31
-1.0627426716425248e-9, 9.999999999999998e-40, 9.114344690899031e-31
3.502664824850399e-11, 9.999999999999998e-40, 9.114344700899032e-31

(5) Permittivity of free space:
error, dx, $\epsilon_0$
-0.0005446185946568205, 1e-15, 8.854187817e-12
-0.0003186985089359551, 1e-15, 8.853187817e-12
-0.00009270185473797543, 1e-15, 8.852187817e-12
-0.00009270185473797543, 1.0000000000000001e-16, 8.852187817e-12
-0.00007009797671997386, 1.0000000000000001e-16, 8.852087817e-12
-0.00004749333263676103, 1.0000000000000001e-16, 8.851987817e-12
-0.00002488792245347593, 1.0000000000000001e-16, 8.851887817e-12
-0.0000022817461350355117, 1.0000000000000001e-16, 8.851787817000001e-12
-0.0000022817461350355117, 1e-17, 8.851787817000001e-12
-2.108636454334345e-8, 1e-17, 8.851777817000002e-12
-2.108636454334345e-8, 1e-18, 8.851777817000002e-12
-2.108636454334345e-8, 1.0000000000000001e-19, 8.851777817000002e-12
1.5202716863171872e-9, 1.0000000000000001e-19, 8.851777717000002e-12
1.5202716863171872e-9, 1.0000000000000001e-20, 8.851777717000002e-12
-7.403918589332648e-10, 1.0000000000000001e-20, 8.851777727000002e-12
-7.403918589332648e-10, 1.0000000000000001e-21, 8.851777727000002e-12
-5.143258041684362e-10, 1.0000000000000001e-21, 8.851777726000002e-12
-2.882593053143978e-10, 1.0000000000000001e-21, 8.851777725000002e-12
-6.219280646035941e-11, 1.0000000000000001e-21, 8.851777724000002e-12

(1) Planck's Constant:
error, dx, h
-0.0005446185946568205, 1e-37, 6.62607004e-34
-0.00009172484027375472, 1e-37, 6.62507004e-34
-0.00009172484027375472, 1.0000000000000001e-38, 6.62507004e-34
-0.00004642042436875382, 1.0000000000000001e-38, 6.62497004e-34
-0.0000011132730078911024, 1.0000000000000001e-38, 6.6248700400000005e-34
-0.0000011132730078911024, 1.0000000000000001e-39, 6.6248700400000005e-34
-0.0000011132730078911024, 1.0000000000000001e-40, 6.6248700400000005e-34
-6.601876793022043e-7, 1.0000000000000001e-40, 6.62486904e-34
-2.0710207759844224e-7, 1.0000000000000001e-40, 6.62486804e-34
-2.0710207759844224e-7, 1.0000000000000001e-41, 6.62486804e-34
-1.617935022624195e-7, 1.0000000000000001e-41, 6.62486794e-34
-1.1648492426186152e-7, 1.0000000000000001e-41, 6.62486784e-34
-7.117634359676828e-8, 1.0000000000000001e-41, 6.62486774e-34
-2.5867760267139772e-8, 1.0000000000000001e-41, 6.62486764e-34
1.9440826282135504e-8, 1.0000000000000001e-41, 6.62486754e-34
1.9440826282135504e-8, 1.0000000000000002e-42, 6.62486754e-34
1.4909967482878983e-8, 1.0000000000000002e-42, 6.62486755e-34
1.0379108905667067e-8, 1.0000000000000002e-42, 6.62486756e-34
5.848250106410546e-9, 1.0000000000000002e-42, 6.62486757e-34
1.3173915291986305e-9, 1.0000000000000002e-42, 6.62486758e-34
1.3173915291986305e-9, 1.0000000000000003e-43, 6.62486758e-34
8.643059601354253e-10, 1.0000000000000003e-43, 6.624867581e-34
4.1122016902761516e-10, 1.0000000000000003e-43, 6.624867581999999e-34
-4.1865733102497416e-11, 1.0000000000000003e-43, 6.624867582999999e-34

The fine-structure constant, $\alpha$ is squared, thus, like the proton radius going negative, $\alpha$  reduces the error towards ZERO (0) by increasing to a LARGE value.

Once a second set of constants is generated from the first step of the algorithm, the error will be compared to the original 0.000544 and comments/analysis made/continued.

Ongoing... ...note: these posts are investigative - will summarize findings after investigation.



BASIC code (simple) as of 5/20/2023:
10 PRINT "Hello World"
100 Rem New Algorith 1.1 5/15/2023 MR
102 count = 0
106 print "error, dx, q"
110 Dim x2(7),sign(7), dx(7)
120 Rem Init some vars
125 aminerr=1.0
132 res = 1e-10
200 xpi=3.14159265358979323846
250 rem 8 coefs here
255 Rem elementary charge (e)-0
260 x2(0)=1.60217662e-19
263 xorig(0)=x2(0)
265 Rem Planck's constant (h)-1
300 x2(1)=6.62607004e-34
325 xorig(1)=x2(1)
350 rem electron mass (Me)-2
400 x2(2)=9.109383560899034e-31
425 xorig(2)=x2(2)
450 Rem Proton radius (Rp)-3
500 x2(3)=8.41235640479985e-16
525 xorig(3)=x2(3)
550 Rem Rydberg Constant (R_H or R_{\infty})-4
600 x2(4)=10973731.5685083
605 xorig(4)=x2(4)
610 Rem Permittivity of free space (e0)-5
620 x2(5)=8.854187817e-12
650 xorig(5)=x2(5)
701 Rem Speed of Light (c)-6
702 x2(6)=299792458.0
704 xorig(6)=x2(6)
706 Rem fine-structure constant (\alpha)-7
708 x2(7)=0.00729735256
709 xorig(7)=x2(7)
710 For i = 0 to 7
720 sign(i)=0
730 next i
740 dx(0) = 0.001e-19
741 dx(1) = 0.001e-34
742 dx(2) = 0.001e-31
743 dx(3) = 1e-16
744 dx(4) = 10000000.0
745 dx(5) = 0.001e-12
746 dx(6) = 10000000.0
747 dx(7) = 0.001
750 Rem define bit to be twiddled here
1030 eold = err
1050 gosub 1600
1051 REM enter starting values here (temporary initial start)
1075 rem x2(0)=1.602e-19
1076 rem x2(1)=6.626e-34
1077 rem x2(2)=9.109e-31
1078 rem x2(3)=8.0e-16
1080 REM EDIT "i" to select constant 0,1,2... etc.
1090 i = 1 
1100 print err;", ";dx(i);", ";x2(i)
1150 rem Main Loop1 
1210 z1=x2(i)+dx(i)
1220 z2=x2(i)-dx(i)
1230 xsave=x2(i)
1240 x2(i)=z1
1250 eold = err
1260 gosub 1600
1270 e1=err
1280 x2(i)=z2
1290 gosub 1600
1300 e2=err
1310 x2(i)=xsave
1320 err = eold
1325 rem print x2(i),z1,z2
1327 rem print err,e1,e2
1330 if abs(e1) < abs(err) then x2(i)=z1
1332 if abs(e1) < abs(err) then aminerr=e1
1340 if abs(e2) < abs(err) then x2(i)=z2
1342 if abs(e2) < abs(err) then aminerr=e2
1350 if (abs(e1) >= abs(err)) and (abs(e2) >= abs(err)) then dx(i)=dx(i)/10.0
1360 if abs(aminerr) < res then goto 1500
1370 gosub 1600
1380 goto 1100
1500 gosub 1600
1510 print err;", ";dx(i);", ";x2(i)
1525 end
1550 REM Subroutines:
1600 rem starting error
1700 xerr1=x2(2)*x2(0)^4/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))
1800 yerr2=-xpi*x2(3)*x2(4)/(x2(7)^2)
1900 err = xerr1 + yerr2 - 1.0
2000 return
One slight modification to the polynomial is to use the $m_e\over m_p$ format, working with the proton mass, then calculating the radius afterwards...

Wednesday, May 17, 2023

New Algorithm Requires Modification - Crash & Burn 2.0

Looks like the algorithm will need some modification or the polynomial expanded/re-written.  The polynomial as written has the proton radius, and obviously, by inspection, if one tries to iterate for the proton radius, it comes out NEGATIVE due to the other constants being so far off:
error, dx, $r_p$
-0.0005446185946568205, 1e-16, 8.41235640479985e-16
-0.0009587998163527178, 9.999999999999999e-18, 8e-16
-0.0009523258036489013, 9.999999999999999e-18, 7.9e-16
-0.0009458517909451958, 9.999999999999999e-18, 7.800000000000001e-16
-0.0009393777782413792, 9.999999999999999e-18, 7.700000000000001e-16
-0.0009329037655375627, 9.999999999999999e-18, 7.600000000000001e-16
-0.0009264297528338572, 9.999999999999999e-18, 7.500000000000002e-16
-0.0009199557401300407, 9.999999999999999e-18, 7.400000000000002e-16
-0.0009134817274263352, 9.999999999999999e-18, 7.300000000000002e-16
-0.0009070077147225186, 9.999999999999999e-18, 7.200000000000003e-16
-0.0009005337020188131, 9.999999999999999e-18, 7.100000000000003e-16
-0.0008940596893149966, 9.999999999999999e-18, 7.000000000000003e-16
-0.0008875856766112911, 9.999999999999999e-18, 6.900000000000004e-16
-0.0008811116639074745, 9.999999999999999e-18, 6.800000000000004e-16
-0.000874637651203658, 9.999999999999999e-18, 6.700000000000004e-16
-0.0008681636384999525, 9.999999999999999e-18, 6.600000000000005e-16
-0.000861689625796136, 9.999999999999999e-18, 6.500000000000005e-16
-0.0008552156130924304, 9.999999999999999e-18, 6.400000000000005e-16
-0.0008487416003886139, 9.999999999999999e-18, 6.300000000000006e-16
-0.0008422675876849084, 9.999999999999999e-18, 6.200000000000006e-16
-0.0008357935749810919, 9.999999999999999e-18, 6.100000000000006e-16
-0.0008293195622773863, 9.999999999999999e-18, 6.000000000000007e-16
-0.0008228455495735698, 9.999999999999999e-18, 5.900000000000007e-16
-0.0008163715368697533, 9.999999999999999e-18, 5.800000000000007e-16
-0.0008098975241660478, 9.999999999999999e-18, 5.700000000000008e-16
-0.0008034235114622312, 9.999999999999999e-18, 5.600000000000008e-16
-0.0007969494987585257, 9.999999999999999e-18, 5.500000000000009e-16
-0.0007904754860547092, 9.999999999999999e-18, 5.400000000000009e-16
-0.0007840014733510037, 9.999999999999999e-18, 5.300000000000009e-16
-0.0007775274606471871, 9.999999999999999e-18, 5.20000000000001e-16
-0.0007710534479434816, 9.999999999999999e-18, 5.10000000000001e-16
-0.0007645794352396651, 9.999999999999999e-18, 5.00000000000001e-16
-0.0007581054225358486, 9.999999999999999e-18, 4.900000000000011e-16
-0.000751631409832143, 9.999999999999999e-18, 4.800000000000011e-16
-0.0007451573971283265, 9.999999999999999e-18, 4.700000000000011e-16
-0.000738683384424621, 9.999999999999999e-18, 4.600000000000012e-16
-0.0007322093717208045, 9.999999999999999e-18, 4.500000000000012e-16
-0.000725735359017099, 9.999999999999999e-18, 4.400000000000012e-16
-0.0007192613463132824, 9.999999999999999e-18, 4.3000000000000117e-16
-0.0007127873336094659, 9.999999999999999e-18, 4.2000000000000115e-16
-0.0007063133209057604, 9.999999999999999e-18, 4.1000000000000114e-16
-0.0006998393082019438, 9.999999999999999e-18, 4.0000000000000113e-16
-0.0006933652954982383, 9.999999999999999e-18, 3.900000000000011e-16
-0.0006868912827944218, 9.999999999999999e-18, 3.800000000000011e-16
-0.0006804172700907163, 9.999999999999999e-18, 3.700000000000011e-16
-0.0006739432573868998, 9.999999999999999e-18, 3.6000000000000107e-16
-0.0006674692446831942, 9.999999999999999e-18, 3.5000000000000105e-16
-0.0006609952319793777, 9.999999999999999e-18, 3.4000000000000104e-16
-0.0006545212192755612, 9.999999999999999e-18, 3.30000000000001e-16
-0.0006480472065718557, 9.999999999999999e-18, 3.20000000000001e-16
-0.0006415731938680391, 9.999999999999999e-18, 3.10000000000001e-16
-0.0006350991811643336, 9.999999999999999e-18, 3.00000000000001e-16
-0.0006286251684605171, 9.999999999999999e-18, 2.9000000000000097e-16
-0.0006221511557568116, 9.999999999999999e-18, 2.8000000000000095e-16
-0.000615677143052995, 9.999999999999999e-18, 2.7000000000000094e-16
-0.0006092031303492895, 9.999999999999999e-18, 2.600000000000009e-16
-0.000602729117645473, 9.999999999999999e-18, 2.500000000000009e-16
-0.0005962551049416565, 9.999999999999999e-18, 2.400000000000009e-16
-0.0005897810922379509, 9.999999999999999e-18, 2.300000000000009e-16
-0.0005833070795341344, 9.999999999999999e-18, 2.200000000000009e-16
-0.0005768330668304289, 9.999999999999999e-18, 2.100000000000009e-16
-0.0005703590541266124, 9.999999999999999e-18, 2.000000000000009e-16
-0.0005638850414229069, 9.999999999999999e-18, 1.9000000000000092e-16
-0.0005574110287190903, 9.999999999999999e-18, 1.8000000000000093e-16
-0.0005509370160153848, 9.999999999999999e-18, 1.7000000000000094e-16
-0.0005444630033115683, 9.999999999999999e-18, 1.6000000000000095e-16
-0.0005379889906077517, 9.999999999999999e-18, 1.5000000000000096e-16
-0.0005315149779040462, 9.999999999999999e-18, 1.4000000000000097e-16
-0.0005250409652002297, 9.999999999999999e-18, 1.3000000000000098e-16
-0.0005185669524965242, 9.999999999999999e-18, 1.20000000000001e-16
-0.0005120929397927076, 9.999999999999999e-18, 1.1000000000000099e-16
-0.0005056189270890021, 9.999999999999999e-18, 1.0000000000000098e-16
-0.0004991449143851856, 9.999999999999999e-18, 9.000000000000098e-17
-0.0004926709016813691, 9.999999999999999e-18, 8.000000000000098e-17
-0.00048619688897766355, 9.999999999999999e-18, 7.000000000000098e-17
-0.000479722876273847, 9.999999999999999e-18, 6.000000000000097e-17
-0.0004732488635701415, 9.999999999999999e-18, 5.000000000000097e-17
-0.000466774850866325, 9.999999999999999e-18, 4.000000000000097e-17
-0.00046030083816261946, 9.999999999999999e-18, 3.000000000000097e-17
-0.00045382682545880293, 9.999999999999999e-18, 2.000000000000097e-17
-0.0004473528127550974, 9.999999999999999e-18, 1.000000000000097e-17
-0.0004408788000512809, 9.999999999999999e-18, 9.706686919711669e-31
-0.00043440478734746435, 9.999999999999999e-18, -9.999999999999029e-18
-0.00042793077464375884, 9.999999999999999e-18, -1.9999999999999028e-17
-0.0004214567619399423, 9.999999999999999e-18, -2.9999999999999027e-17
-0.0004149827492362368, 9.999999999999999e-18, -3.999999999999902e-17
-0.00040850873653242026, 9.999999999999999e-18, -4.9999999999999025e-17
-0.00040203472382871475, 9.999999999999999e-18, -5.999999999999903e-17
-0.0003955607111248982, 9.999999999999999e-18, -6.999999999999903e-17
-0.0003890866984211927, 9.999999999999999e-18, -7.999999999999903e-17
-0.00038261268571737617, 9.999999999999999e-18, -8.999999999999903e-17
-0.00037613867301355963, 9.999999999999999e-18, -9.999999999999904e-17
-0.0003696646603098541, 9.999999999999999e-18, -1.0999999999999904e-16
-0.0003631906476060376, 9.999999999999999e-18, -1.1999999999999904e-16
-0.0003567166349023321, 9.999999999999999e-18, -1.2999999999999903e-16
-0.00035024262219851554, 9.999999999999999e-18, -1.3999999999999902e-16
-0.00034376860949481003, 9.999999999999999e-18, -1.49999999999999e-16
-0.0003372945967909935, 9.999999999999999e-18, -1.59999999999999e-16
-0.000330820584087288, 9.999999999999999e-18, -1.69999999999999e-16
-0.00032434657138347145, 9.999999999999999e-18, -1.7999999999999898e-16
-0.0003178725586796549, 9.999999999999999e-18, -1.8999999999999897e-16
-0.0003113985459759494, 9.999999999999999e-18, -1.9999999999999896e-16
-0.00030492453327213287, 9.999999999999999e-18, -2.0999999999999895e-16
-0.00029845052056842736, 9.999999999999999e-18, -2.1999999999999894e-16
-0.0002919765078646108, 9.999999999999999e-18, -2.2999999999999895e-16
-0.0002855024951609053, 9.999999999999999e-18, -2.3999999999999897e-16
-0.0002790284824570888, 9.999999999999999e-18, -2.49999999999999e-16
-0.00027255446975327224, 9.999999999999999e-18, -2.59999999999999e-16
-0.00026608045704956673, 9.999999999999999e-18, -2.69999999999999e-16
-0.0002596064443457502, 9.999999999999999e-18, -2.7999999999999903e-16
-0.0002531324316420447, 9.999999999999999e-18, -2.8999999999999904e-16
-0.00024665841893822815, 9.999999999999999e-18, -2.9999999999999906e-16
-0.00024018440623452264, 9.999999999999999e-18, -3.0999999999999907e-16
-0.0002337103935307061, 9.999999999999999e-18, -3.199999999999991e-16
-0.0002272363808270006, 9.999999999999999e-18, -3.299999999999991e-16
-0.00022076236812318406, 9.999999999999999e-18, -3.399999999999991e-16
-0.00021428835541936753, 9.999999999999999e-18, -3.4999999999999913e-16
-0.00020781434271566201, 9.999999999999999e-18, -3.5999999999999914e-16
-0.00020134033001184548, 9.999999999999999e-18, -3.6999999999999916e-16
-0.00019486631730813997, 9.999999999999999e-18, -3.7999999999999917e-16
-0.00018839230460432344, 9.999999999999999e-18, -3.899999999999992e-16
-0.00018191829190061792, 9.999999999999999e-18, -3.999999999999992e-16
-0.0001754442791968014, 9.999999999999999e-18, -4.099999999999992e-16
-0.00016897026649309588, 9.999999999999999e-18, -4.1999999999999923e-16
-0.00016249625378927934, 9.999999999999999e-18, -4.2999999999999925e-16
-0.0001560222410854628, 9.999999999999999e-18, -4.3999999999999926e-16
-0.0001495482283817573, 9.999999999999999e-18, -4.499999999999992e-16
-0.00014307421567794076, 9.999999999999999e-18, -4.599999999999992e-16
-0.00013660020297423525, 9.999999999999999e-18, -4.699999999999992e-16
-0.00013012619027041872, 9.999999999999999e-18, -4.799999999999991e-16
-0.0001236521775667132, 9.999999999999999e-18, -4.899999999999991e-16
-0.00011717816486289667, 9.999999999999999e-18, -4.999999999999991e-16
-0.00011070415215919116, 9.999999999999999e-18, -5.09999999999999e-16
-0.00010423013945537463, 9.999999999999999e-18, -5.19999999999999e-16
-0.00009775612675155809, 9.999999999999999e-18, -5.299999999999989e-16
-0.00009128211404785258, 9.999999999999999e-18, -5.399999999999989e-16
-0.00008480810134403605, 9.999999999999999e-18, -5.499999999999989e-16
-0.00007833408864033053, 9.999999999999999e-18, -5.599999999999988e-16
-0.000071860075936514, 9.999999999999999e-18, -5.699999999999988e-16
-0.00006538606323280849, 9.999999999999999e-18, -5.799999999999988e-16
-0.000058912050528991955, 9.999999999999999e-18, -5.899999999999987e-16
-0.00005243803782517542, 9.999999999999999e-18, -5.999999999999987e-16
-0.00004596402512146991, 9.999999999999999e-18, -6.099999999999987e-16
-0.000039490012417653375, 9.999999999999999e-18, -6.199999999999986e-16
-0.00003301599971394786, 9.999999999999999e-18, -6.299999999999986e-16
-0.00002654198701013133, 9.999999999999999e-18, -6.399999999999986e-16
-0.000020067974306425818, 9.999999999999999e-18, -6.499999999999985e-16
-0.000013593961602609284, 9.999999999999999e-18, -6.599999999999985e-16
-0.000007119948898903772, 9.999999999999999e-18, -6.699999999999985e-16
-6.459361950872378e-7, 9.999999999999999e-18, -6.799999999999984e-16
-6.459361950872378e-7, 9.999999999999999e-19, -6.799999999999984e-16
1.465075394335713e-9, 9.999999999999999e-19, -6.809999999999984e-16
1.465075394335713e-9, 9.999999999999999e-20, -6.809999999999984e-16
1.465075394335713e-9, 9.999999999999998e-21, -6.809999999999984e-16
1.465075394335713e-9, 9.999999999999997e-22, -6.809999999999984e-16
8.176739285659096e-10, 9.999999999999997e-22, -6.809989999999984e-16
1.70272684840711e-10, 9.999999999999997e-22, -6.809979999999984e-16
1.70272684840711e-10, 9.999999999999997e-23, -6.809979999999984e-16
1.055326936949541e-10, 9.999999999999997e-23, -6.809978999999984e-16
4.0792480504592277e-11, 9.999999999999997e-23, -6.809977999999984e-16

Likely will have to iterate ALL constants that are in the original limited Rydberg equation EXCEPT for proton radius until they are corrected enough to allow for the proton radius to be a positive number closer to expected value.  
updates incoming... 

For the Rydberg Constant $(R_H or R_{\infty})$
error, dx, $R_H$
-0.0005446185946568205, 10000000, 10973731.5685083
-0.0005446185946568205, 1000000, 10973731.5685083 -0.0005446185946568205, 100000, 10973731.5685083 -0.0005446185946568205, 10000, 10973731.5685083 0.0003679759110610803, 10000, 10963731.5685083 0.0003679759110610803, 1000, 10963731.5685083 0.0002766415942339062, 1000, 10964731.5685083 0.00018532392648995533, 1000, 10965731.5685083 0.00009402290327442664, 1000, 10966731.5685083 0.0000027385200349616667, 1000, 10967731.5685083 0.0000027385200349616667, 100, 10967731.5685083 0.0000027385200349616667, 10, 10967731.5685083 0.0000018257602190097089, 10, 10967741.5685083 9.130020666159311e-7, 10, 10967751.5685083 2.4557778033340583e-10, 10, 10967761.5685083 2.4557778033340583e-10, 1, 10967761.5685083 2.4557778033340583e-10, 0.1, 10967761.5685083 2.4557778033340583e-10, 0.01, 10967761.5685083 2.4557778033340583e-10, 0.001, 10967761.5685083 1.5430212663147813e-10, 0.001, 10967761.569508301 6.302669497415536e-11, 0.001, 10967761.570508301

Will continue to check all constants to uncover other issues and
reformulate approach.

The Surfer, OM-IV

Quantum Geometry - Dramatically Simplifies Calculations

https://www.science-astronomy.com/2022/09/scientists-discover-jewel-at-heart-of.html

Geometrical nature of physical reality allows for dramatically simplified calculations. This makes determining the "boundary problem" coefficients - or constants - possible.

The constants of physics are not "free variables" but boundary problem coefficients.

It is the intent of this blog to verify the roots/solution to the Full Rydberg equation converges to these constants.
The Surfer, OM-IV
©2023 Mark Eric Rohrbaugh & Lyz Starwalker © 2023

Monday, May 15, 2023

ECO - Electron Charge Only - Fixing Other Constants - Root Algorithm & Results


https://spark.iop.org/perrin-tube-sign-electron-charge

Solving for the electron charge only (part of step 2 of The Algorithm), here is a simple BASIC routine and results.  BASIC is being used so the algorithm is easily viewable and verifiable. 

Here is the BASIC code (online interpreter - https://www.calormen.com/jsbasic/):
1 REM variables only recognize first two characters thus xx1 and xx2 are same variable
10 PRINT "Hello World"
100 Rem New Algorithm 1.1 5/15/2023 MR
102 count = 0
106 print "error, dx, q"
110 Dim x2(7),sign(7), dx(7)
120 Rem Init some vars
125 aminerr=1.0
132 res = 1e-10
200 xpi=3.14159265358979323846
250 rem 8 coefs here
255 Rem elementary charge (e)-0
260 x2(0)=1.60217662e-19
263 xorig(0)=x2(0)
265 Rem Planck's constant (h)-1
300 x2(1)=6.62607004e-34
325 xorig(1)=x2(1)
350 rem eletron mass (Me)-2
400 x2(2)=9.109383560899034e-31
425 xorig(2)=x2(2)
450 Rem Proton radius (Rp)-3
500 x2(3)=8.41235640479985e-16
525 xorig(3)=x2(3)
550 Rem Rydberg Constant (R_H or R_{\infty})-4
600 x2(4)=10973731.5685083
605 xorig(4)=x2(4)
610 Rem Permittivity of free space (e0)-5
620 x2(5)=8.854187817e-12
650 xorig(5)=x2(5)
701 Rem Speed of Light (c)-6
702 x2(6)=299792458.0
704 xorig(6)=x2(6)
706 Rem fine-structure constant (\alpha)-7
708 x2(7)=0.00729735256
709 xorig(7)=x2(7)
710 For i = 0 to 7
720 sign(i)=0
730 dx(i) = 0.001e-19
740 next i
750 Rem define bit to be twiddled here
1030 eold = err
1050 gosub 1600
1075 x2(0)=1.602e-19
1100 print err;", ";dx(0);", ";x2(0)
1150 rem Main Loop1 
1210 z1=x2(0)+dx(0)
1220 z2=x2(0)-dx(0)
1230 xsave=x2(0)
1240 x2(0)=z1
1250 eold = err
1260 gosub 1600
1270 e1=err
1280 x2(0)=z2
1290 gosub 1600
1300 e2=err
1310 x2(0)=xsave
1320 err = eold
1325 rem print x2(0),z1,z2
1327 rem print err,e1,e2
1330 if abs(e1) < abs(err) then x2(0)=z1
1332 if abs(e1) < abs(err) then aminerr=e1
1340 if abs(e2) < abs(err) then x2(0)=z2
1342 if abs(e2) < abs(err) then aminerr=e2
1350 if (abs(e1) >= abs(err)) and (abs(e2) >= abs(err)) then dx(0)=dx(0)/10.0
1360 if abs(aminerr) < res then goto 1500
1370 gosub 1600
1380 goto 1100
1500 gosub 1600
1510 print err;", ";dx(0);", ";x2(0)
1525 end
1550 REM Subroutines:
1600 rem starting error
1700 xerr1=x2(2)*x2(0)^4/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))
1800 yerr2=-xpi*x2(3)*x2(4)/(x2(7)^2)
1900 err = xerr1 + yerr2 - 1.0
2000 return

Here are the results for a resolution of the error of the polynomial from ideal, res = 1e-10 case:
error, dx, q
-0.0005446185946568205, 1e-22, 1.60217662e-19*
-0.0009854958223842747, 1.0000000000000001e-23, 1.602e-19
-0.0007358946446630599, 1.0000000000000001e-23, 1.6021e-19
-0.0004862467236895762, 1.0000000000000001e-23, 1.6022e-19
-0.0002365520536283805, 1.0000000000000001e-23, 1.6023000000000001e-19
0.000013189371356858715, 1.0000000000000001e-23, 1.6024000000000002e-19
0.000013189371356858715, 1.0000000000000001e-24, 1.6024000000000002e-19
-0.000011786875279473641, 1.0000000000000001e-24, 1.6023900000000003e-19
-0.000011786875279473641, 1.0000000000000002e-25, 1.6023900000000003e-19
-0.000009289271657997311, 1.0000000000000002e-25, 1.6023910000000003e-19
-0.000006791663360261602, 1.0000000000000002e-25, 1.6023920000000003e-19
-0.000004294050386932646, 1.0000000000000002e-25, 1.6023930000000004e-19
-0.0000017964327371222666, 1.0000000000000002e-25, 1.6023940000000004e-19
7.011895886144259e-7, 1.0000000000000002e-25, 1.6023950000000005e-19
7.011895886144259e-7, 1.0000000000000002e-26, 1.6023950000000005e-19
4.5142714544255114e-7, 1.0000000000000002e-26, 1.6023949000000004e-19
2.0166474912208798e-7, 1.0000000000000002e-26, 1.6023948000000003e-19
-4.8097600902075044e-8, 1.0000000000000002e-26, 1.6023947000000002e-19
-4.8097600902075044e-8, 1.0000000000000002e-27, 1.6023947000000002e-19
-2.3121367820344574e-8, 1.0000000000000002e-27, 1.6023947100000003e-19
1.8548658164974086e-9, 1.0000000000000002e-27, 1.6023947200000003e-19
1.8548658164974086e-9, 1.0000000000000002e-28, 1.6023947200000003e-19
-6.427575138800989e-10, 1.0000000000000002e-28, 1.6023947190000004e-19
-6.427575138800989e-10, 1.0000000000000002e-29, 1.6023947190000004e-19
-3.92995080922276e-10, 1.0000000000000002e-29, 1.6023947191000005e-19
-1.43232647964453e-10, 1.0000000000000002e-29, 1.6023947192000005e-19
1.0653011806027735e-10, 1.0000000000000002e-29, 1.6023947193000006e-19
1.0653011806027735e-10, 1.0000000000000003e-30, 1.6023947193000006e-19
8.155409680909997e-11, 1.0000000000000003e-30, 1.6023947192900007e-19

The algorithm requires each constant to be solved for minimum error, using original NIST/CODATA as starting point.  The initial error is about -0.00054, so each constant is iterated until the error is zero to the specified res(olution), then a new error is calculated with the new set of constants.  Check to see if the error from the new set of constants is less than the starting error.  If it is, continue and check if converging.

Therefore, this is only 1 of 8 constants. 

*Also, note, some work for initial and final printing of the values is needed for completeness. Bold initial value is hand entered...

All bugs are not worked out as this is early code.  This code is being written with future consideration of iterating ALL 8 constants, however, to make progress, I will be blogging about each constant individually just like the electron charge here.

CSV, Comma Separated Variables, format is used for output for easy importing into Excel or most common spreadsheet tools.  Will be showing plots of error & vaules converging later. Soon, however, moar than 2 weeks...

The Surfer, OM-IV

Tuesday, May 2, 2023

New Polynomial Root Algorithm, continued





First column is the electron charge, it is iterated while the other constants are held to their original values and the LAST column is the ERROR.  The closer to zero the ERROR is the better the coefficients fit the theory. electron charge e = 1.602e-19 Coulombs, note the algorithm will compute to any desired number of decimal places. This is an intermediate step, all steps of the algorithm must be completed to verify that the overall error is going to zero. Ongoing…


Moar l8ter
This post is a continuation of:
https://phxmarker.blogspot.com/2022/09/new-algorithm-idea-multi-variate.html
For those new to the blog, here is a post with the "mainstream" derivation of the polynomial:

©2023 Mark E Rohrbaugh & Lyz Starwalker 

The Surfer, OM-IV