https://energywavetheory.com/subatomic-particles/electron/ |
(2) The electron mass:
error, dx, $e_m$
-0.0005446185946568205, 1e-34, 9.109383560899034e-31
-0.0004348416825593615, 1e-34, 9.110383560899034e-31
-0.0003250647704619025, 1e-34, 9.111383560899033e-31
-0.00021528785836444353, 1e-34, 9.112383560899032e-31
-0.0001055109462667625, 1e-34, 9.113383560899032e-31
0.0000042659658308075166, 1e-34, 9.114383560899031e-31
0.0000042659658308075166, 9.999999999999999e-36, 9.114383560899031e-31
0.0000042659658308075166, 1e-36, 9.114383560899031e-31
0.000003168196709646409, 1e-36, 9.11437356089903e-31
0.0000020704275887073464, 1e-36, 9.11436356089903e-31
9.726584677682837e-7, 1e-36, 9.11435356089903e-31
-1.2511065350384598e-7, 1e-36, 9.11434356089903e-31
-1.2511065350384598e-7, 9.999999999999999e-38, 9.11434356089903e-31
-1.5333741276712942e-8, 9.999999999999999e-38, 9.11434456089903e-31
-1.5333741276712942e-8, 9.999999999999998e-39, 9.11434456089903e-31
-4.356050076204099e-9, 9.999999999999998e-39, 9.11434466089903e-31
-4.356050076204099e-9, 9.999999999999998e-40, 9.11434466089903e-31
-3.2582810893799774e-9, 9.999999999999998e-40, 9.11434467089903e-31
-2.160511880511251e-9, 9.999999999999998e-40, 9.114344680899031e-31
-1.0627426716425248e-9, 9.999999999999998e-40, 9.114344690899031e-31
3.502664824850399e-11, 9.999999999999998e-40, 9.114344700899032e-31
(5) Permittivity of free space:
error, dx, $\epsilon_0$
-0.0005446185946568205, 1e-15, 8.854187817e-12
-0.0003186985089359551, 1e-15, 8.853187817e-12
-0.00009270185473797543, 1e-15, 8.852187817e-12
-0.00009270185473797543, 1.0000000000000001e-16, 8.852187817e-12
-0.00007009797671997386, 1.0000000000000001e-16, 8.852087817e-12
-0.00004749333263676103, 1.0000000000000001e-16, 8.851987817e-12
-0.00002488792245347593, 1.0000000000000001e-16, 8.851887817e-12
-0.0000022817461350355117, 1.0000000000000001e-16, 8.851787817000001e-12
-0.0000022817461350355117, 1e-17, 8.851787817000001e-12
-2.108636454334345e-8, 1e-17, 8.851777817000002e-12
-2.108636454334345e-8, 1e-18, 8.851777817000002e-12
-2.108636454334345e-8, 1.0000000000000001e-19, 8.851777817000002e-12
1.5202716863171872e-9, 1.0000000000000001e-19, 8.851777717000002e-12
1.5202716863171872e-9, 1.0000000000000001e-20, 8.851777717000002e-12
-7.403918589332648e-10, 1.0000000000000001e-20, 8.851777727000002e-12
-7.403918589332648e-10, 1.0000000000000001e-21, 8.851777727000002e-12
-5.143258041684362e-10, 1.0000000000000001e-21, 8.851777726000002e-12
-2.882593053143978e-10, 1.0000000000000001e-21, 8.851777725000002e-12
-6.219280646035941e-11, 1.0000000000000001e-21, 8.851777724000002e-12
(1) Planck's Constant:
error, dx, h
-0.0005446185946568205, 1e-37, 6.62607004e-34
-0.00009172484027375472, 1e-37, 6.62507004e-34
-0.00009172484027375472, 1.0000000000000001e-38, 6.62507004e-34
-0.00004642042436875382, 1.0000000000000001e-38, 6.62497004e-34
-0.0000011132730078911024, 1.0000000000000001e-38, 6.6248700400000005e-34
-0.0000011132730078911024, 1.0000000000000001e-39, 6.6248700400000005e-34
-0.0000011132730078911024, 1.0000000000000001e-40, 6.6248700400000005e-34
-6.601876793022043e-7, 1.0000000000000001e-40, 6.62486904e-34
-2.0710207759844224e-7, 1.0000000000000001e-40, 6.62486804e-34
-2.0710207759844224e-7, 1.0000000000000001e-41, 6.62486804e-34
-1.617935022624195e-7, 1.0000000000000001e-41, 6.62486794e-34
-1.1648492426186152e-7, 1.0000000000000001e-41, 6.62486784e-34
-7.117634359676828e-8, 1.0000000000000001e-41, 6.62486774e-34
-2.5867760267139772e-8, 1.0000000000000001e-41, 6.62486764e-34
1.9440826282135504e-8, 1.0000000000000001e-41, 6.62486754e-34
1.9440826282135504e-8, 1.0000000000000002e-42, 6.62486754e-34
1.4909967482878983e-8, 1.0000000000000002e-42, 6.62486755e-34
1.0379108905667067e-8, 1.0000000000000002e-42, 6.62486756e-34
5.848250106410546e-9, 1.0000000000000002e-42, 6.62486757e-34
1.3173915291986305e-9, 1.0000000000000002e-42, 6.62486758e-34
1.3173915291986305e-9, 1.0000000000000003e-43, 6.62486758e-34
8.643059601354253e-10, 1.0000000000000003e-43, 6.624867581e-34
4.1122016902761516e-10, 1.0000000000000003e-43, 6.624867581999999e-34
-4.1865733102497416e-11, 1.0000000000000003e-43, 6.624867582999999e-34
The fine-structure constant, $\alpha$ is squared, thus, like the proton radius going negative, $\alpha$ reduces the error towards ZERO (0) by increasing to a LARGE value.
Once a second set of constants is generated from the first step of the algorithm, the error will be compared to the original 0.000544 and comments/analysis made/continued.
Ongoing... ...note: these posts are investigative - will summarize findings after investigation.
BASIC code (simple) as of 5/20/2023:
10 PRINT "Hello World"
100 Rem New Algorith 1.1 5/15/2023 MR
102 count = 0
106 print "error, dx, q"
110 Dim x2(7),sign(7), dx(7)
120 Rem Init some vars
125 aminerr=1.0
132 res = 1e-10
200 xpi=3.14159265358979323846
250 rem 8 coefs here
255 Rem elementary charge (e)-0
260 x2(0)=1.60217662e-19
263 xorig(0)=x2(0)
265 Rem Planck's constant (h)-1
300 x2(1)=6.62607004e-34
325 xorig(1)=x2(1)
350 rem electron mass (Me)-2
400 x2(2)=9.109383560899034e-31
425 xorig(2)=x2(2)
450 Rem Proton radius (Rp)-3
500 x2(3)=8.41235640479985e-16
525 xorig(3)=x2(3)
550 Rem Rydberg Constant (R_H or R_{\infty})-4
600 x2(4)=10973731.5685083
605 xorig(4)=x2(4)
610 Rem Permittivity of free space (e0)-5
620 x2(5)=8.854187817e-12
650 xorig(5)=x2(5)
701 Rem Speed of Light (c)-6
702 x2(6)=299792458.0
704 xorig(6)=x2(6)
706 Rem fine-structure constant (\alpha)-7
708 x2(7)=0.00729735256
709 xorig(7)=x2(7)
710 For i = 0 to 7
720 sign(i)=0
730 next i
740 dx(0) = 0.001e-19
741 dx(1) = 0.001e-34
742 dx(2) = 0.001e-31
743 dx(3) = 1e-16
744 dx(4) = 10000000.0
745 dx(5) = 0.001e-12
746 dx(6) = 10000000.0
747 dx(7) = 0.001
750 Rem define bit to be twiddled here
1030 eold = err
1050 gosub 1600
1051 REM enter starting values here (temporary initial start)
1075 rem x2(0)=1.602e-19
1076 rem x2(1)=6.626e-34
1077 rem x2(2)=9.109e-31
1078 rem x2(3)=8.0e-16
1080 REM EDIT "i" to select constant 0,1,2... etc.
1090 i = 1
1100 print err;", ";dx(i);", ";x2(i)
1150 rem Main Loop1
1210 z1=x2(i)+dx(i)
1220 z2=x2(i)-dx(i)
1230 xsave=x2(i)
1240 x2(i)=z1
1250 eold = err
1260 gosub 1600
1270 e1=err
1280 x2(i)=z2
1290 gosub 1600
1300 e2=err
1310 x2(i)=xsave
1320 err = eold
1325 rem print x2(i),z1,z2
1327 rem print err,e1,e2
1330 if abs(e1) < abs(err) then x2(i)=z1
1332 if abs(e1) < abs(err) then aminerr=e1
1340 if abs(e2) < abs(err) then x2(i)=z2
1342 if abs(e2) < abs(err) then aminerr=e2
1350 if (abs(e1) >= abs(err)) and (abs(e2) >= abs(err)) then dx(i)=dx(i)/10.0
1360 if abs(aminerr) < res then goto 1500
1370 gosub 1600
1380 goto 1100
1500 gosub 1600
1510 print err;", ";dx(i);", ";x2(i)
1525 end
1550 REM Subroutines:
1600 rem starting error
1700 xerr1=x2(2)*x2(0)^4/(8*x2(6)*x2(5)^2*x2(1)^3*x2(4))
1800 yerr2=-xpi*x2(3)*x2(4)/(x2(7)^2)
1900 err = xerr1 + yerr2 - 1.0
2000 return
One slight modification to the polynomial is to use the $m_e\over m_p$ format, working with the proton mass, then calculating the radius afterwards...
No comments:
Post a Comment
Watch the water = Lake π© ππ¦